System Prompt / Instructions
Deployment Pipeline Design
Architecture patterns for multi-stage CI/CD pipelines with approval gates and deployment strategies.
Do not use this skill when
- The task is unrelated to deployment pipeline design
- You need a different domain or tool outside this scope
Instructions
- Clarify goals, constraints, and required inputs.
- Apply relevant best practices and validate outcomes.
- Provide actionable steps and verification.
- If detailed examples are required, open
resources/implementation-playbook.md.
Purpose
Design robust, secure deployment pipelines that balance speed with safety through proper stage organization and approval workflows.
Use this skill when
- Design CI/CD architecture
- Implement deployment gates
- Configure multi-environment pipelines
- Establish deployment best practices
- Implement progressive delivery
Pipeline Stages
Standard Pipeline Flow
┌─────────┐ ┌──────┐ ┌─────────┐ ┌────────┐ ┌──────────┐
│ Build │ → │ Test │ → │ Staging │ → │ Approve│ → │Production│
└─────────┘ └──────┘ └─────────┘ └────────┘ └──────────┘
Detailed Stage Breakdown
- Source - Code checkout
- Build - Compile, package, containerize
- Test - Unit, integration, security scans
- Staging Deploy - Deploy to staging environment
- Integration Tests - E2E, smoke tests
- Approval Gate - Manual approval required
- Production Deploy - Canary, blue-green, rolling
- Verification - Health checks, monitoring
- Rollback - Automated rollback on failure
Approval Gate Patterns
Pattern 1: Manual Approval
# GitHub Actions
production-deploy:
needs: staging-deploy
environment:
name: production
url: https://app.example.com
runs-on: ubuntu-latest
steps:
- name: Deploy to production
run: |
# Deployment commands
Pattern 2: Time-Based Approval
# GitLab CI
deploy:production:
stage: deploy
script:
- deploy.sh production
environment:
name: production
when: delayed
start_in: 30 minutes
only:
- main
Pattern 3: Multi-Approver
# Azure Pipelines
stages:
- stage: Production
dependsOn: Staging
jobs:
- deployment: Deploy
environment:
name: production
resourceType: Kubernetes
strategy:
runOnce:
preDeploy:
steps:
- task: ManualValidation@0
inputs:
notifyUsers: 'team-leads@example.com'
instructions: 'Review staging metrics before approving'
Reference: See assets/approval-gate-template.yml
Deployment Strategies
1. Rolling Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: my-app
spec:
replicas: 10
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 2
maxUnavailable: 1
Characteristics:
- Gradual rollout
- Zero downtime
- Easy rollback
- Best for most applications
2. Blue-Green Deployment
# Blue (current)
kubectl apply -f blue-deployment.yaml
kubectl label service my-app version=blue
# Green (new)
kubectl apply -f green-deployment.yaml
# Test green environment
kubectl label service my-app version=green
# Rollback if needed
kubectl label service my-app version=blue
Characteristics:
- Instant switchover
- Easy rollback
- Doubles infrastructure cost temporarily
- Good for high-risk deployments
3. Canary Deployment
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
name: my-app
spec:
replicas: 10
strategy:
canary:
steps:
- setWeight: 10
- pause: {duration: 5m}
- setWeight: 25
- pause: {duration: 5m}
- setWeight: 50
- pause: {duration: 5m}
- setWeight: 100
Characteristics:
- Gradual traffic shift
- Risk mitigation
- Real user testing
- Requires service mesh or similar
4. Feature Flags
from flagsmith import Flagsmith
flagsmith = Flagsmith(environment_key="API_KEY")
if flagsmith.has_feature("new_checkout_flow"):
# New code path
process_checkout_v2()
else:
# Existing code path
process_checkout_v1()
Characteristics:
- Deploy without releasing
- A/B testing
- Instant rollback
- Granular control
Pipeline Orchestration
Multi-Stage Pipeline Example
name: Production Pipeline
on:
push:
branches: [ main ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Build application
run: make build
- name: Build Docker image
run: docker build -t myapp:${{ github.sha }} .
- name: Push to registry
run: docker push myapp:${{ github.sha }}
test:
needs: build
runs-on: ubuntu-latest
steps:
- name: Unit tests
run: make test
- name: Security scan
run: trivy image myapp:${{ github.sha }}
deploy-staging:
needs: test
runs-on: ubuntu-latest
environment:
name: staging
steps:
- name: Deploy to staging
run: kubectl apply -f k8s/staging/
integration-test:
needs: deploy-staging
runs-on: ubuntu-latest
steps:
- name: Run E2E tests
run: npm run test:e2e
deploy-production:
needs: integration-test
runs-on: ubuntu-latest
environment:
name: production
steps:
- name: Canary deployment
run: |
kubectl apply -f k8s/production/
kubectl argo rollouts promote my-app
verify:
needs: deploy-production
runs-on: ubuntu-latest
steps:
- name: Health check
run: curl -f https://app.example.com/health
- name: Notify team
run: |
curl -X POST ${{ secrets.SLACK_WEBHOOK }} \
-d '{"text":"Production deployment successful!"}'
Pipeline Best Practices
- Fail fast - Run quick tests first
- Parallel execution - Run independent jobs concurrently
- Caching - Cache dependencies between runs
- Artifact management - Store build artifacts
- Environment parity - Keep environments consistent
- Secrets management - Use secret stores (Vault, etc.)
- Deployment windows - Schedule deployments appropriately
- Monitoring integration - Track deployment metrics
- Rollback automation - Auto-rollback on failures
- Documentation - Document pipeline stages
Rollback Strategies
Automated Rollback
deploy-and-verify:
steps:
- name: Deploy new version
run: kubectl apply -f k8s/
- name: Wait for rollout
run: kubectl rollout status deployment/my-app
- name: Health check
id: health
run: |
for i in {1..10}; do
if curl -sf https://app.example.com/health; then
exit 0
fi
sleep 10
done
exit 1
- name: Rollback on failure
if: failure()
run: kubectl rollout undo deployment/my-app
Manual Rollback
# List revision history
kubectl rollout history deployment/my-app
# Rollback to previous version
kubectl rollout undo deployment/my-app
# Rollback to specific revision
kubectl rollout undo deployment/my-app --to-revision=3
Monitoring and Metrics
Key Pipeline Metrics
- Deployment Frequency - How often deployments occur
- Lead Time - Time from commit to production
- Change Failure Rate - Percentage of failed deployments
- Mean Time to Recovery (MTTR) - Time to recover from failure
- Pipeline Success Rate - Percentage of successful runs
- Average Pipeline Duration - Time to complete pipeline
Integration with Monitoring
- name: Post-deployment verification
run: |
# Wait for metrics stabilization
sleep 60
# Check error rate
ERROR_RATE=$(curl -s "$PROMETHEUS_URL/api/v1/query?query=rate(http_errors_total[5m])" | jq '.data.result[0].value[1]')
if (( $(echo "$ERROR_RATE > 0.01" | bc -l) )); then
echo "Error rate too high: $ERROR_RATE"
exit 1
fi
Reference Files
references/pipeline-orchestration.md- Complex pipeline patternsassets/approval-gate-template.yml- Approval workflow templates
Related Skills
github-actions-templates- For GitHub Actions implementationgitlab-ci-patterns- For GitLab CI implementationsecrets-management- For secrets handling
Frequently Asked Questions
What is deployment-pipeline-design?
deployment-pipeline-design is an expert AI persona designed to improve your coding workflow. Design multi-stage CI/CD pipelines with approval gates, security checks, and deployment orchestration. Use when architecting deployment workflows, setting up continuous delivery, or implementing GitOps practices. It provides senior-level context directly within your IDE.
How do I install the deployment-pipeline-design skill in Cursor or Windsurf?
To install the deployment-pipeline-design skill, download the package, extract the files to your project's .cursor/skills directory, and type @deployment-pipeline-design in your editor chat to activate the expert instructions.
Is deployment-pipeline-design free to download?
Yes, the deployment-pipeline-design AI persona is completely free to download and integrate into compatible Agentic IDEs like Cursor, Windsurf, Github Copilot, and Anthropic MCP servers.
deployment-pipeline-design
Design multi-stage CI/CD pipelines with approval gates, security checks, and deployment orchestration. Use when architecting deployment workflows, setting up continuous delivery, or implementing GitOps practices.
Download Skill PackageIDE Invocation
Platform
Price
Setup Instructions
Cursor & Windsurf
- Download the zip file above.
- Extract to
.cursor/skills - Type
@deployment-pipeline-designin editor chat.
Copilot & ChatGPT
Copy the instructions from the panel on the left and paste them into your custom instructions setting.
"Adding this deployment-pipeline-design persona to my Cursor workspace completely changed the quality of code my AI generates. Saves me hours every week."
Level up further
Developers who downloaded deployment-pipeline-design also use these elite AI personas.
3d-web-experience
Expert in building 3D experiences for the web - Three.js, React Three Fiber, Spline, WebGL, and interactive 3D scenes. Covers product configurators, 3D portfolios, immersive websites, and bringing depth to web experiences. Use when: 3D website, three.js, WebGL, react three fiber, 3D experience.
ab-test-setup
Structured guide for setting up A/B tests with mandatory gates for hypothesis, metrics, and execution readiness.
accessibility-compliance-accessibility-audit
You are an accessibility expert specializing in WCAG compliance, inclusive design, and assistive technology compatibility. Conduct audits, identify barriers, and provide remediation guidance.