System Prompt / Instructions
Distributed Tracing
Implement distributed tracing with Jaeger and Tempo for request flow visibility across microservices.
Do not use this skill when
- The task is unrelated to distributed tracing
- You need a different domain or tool outside this scope
Instructions
- Clarify goals, constraints, and required inputs.
- Apply relevant best practices and validate outcomes.
- Provide actionable steps and verification.
- If detailed examples are required, open
resources/implementation-playbook.md.
Purpose
Track requests across distributed systems to understand latency, dependencies, and failure points.
Use this skill when
- Debug latency issues
- Understand service dependencies
- Identify bottlenecks
- Trace error propagation
- Analyze request paths
Distributed Tracing Concepts
Trace Structure
Trace (Request ID: abc123)
↓
Span (frontend) [100ms]
↓
Span (api-gateway) [80ms]
├→ Span (auth-service) [10ms]
└→ Span (user-service) [60ms]
└→ Span (database) [40ms]
Key Components
- Trace - End-to-end request journey
- Span - Single operation within a trace
- Context - Metadata propagated between services
- Tags - Key-value pairs for filtering
- Logs - Timestamped events within a span
Jaeger Setup
Kubernetes Deployment
# Deploy Jaeger Operator
kubectl create namespace observability
kubectl create -f https://github.com/jaegertracing/jaeger-operator/releases/download/v1.51.0/jaeger-operator.yaml -n observability
# Deploy Jaeger instance
kubectl apply -f - <<EOF
apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
name: jaeger
namespace: observability
spec:
strategy: production
storage:
type: elasticsearch
options:
es:
server-urls: http://elasticsearch:9200
ingress:
enabled: true
EOF
Docker Compose
version: '3.8'
services:
jaeger:
image: jaegertracing/all-in-one:latest
ports:
- "5775:5775/udp"
- "6831:6831/udp"
- "6832:6832/udp"
- "5778:5778"
- "16686:16686" # UI
- "14268:14268" # Collector
- "14250:14250" # gRPC
- "9411:9411" # Zipkin
environment:
- COLLECTOR_ZIPKIN_HOST_PORT=:9411
Reference: See references/jaeger-setup.md
Application Instrumentation
OpenTelemetry (Recommended)
Python (Flask)
from opentelemetry import trace
from opentelemetry.exporter.jaeger.thrift import JaegerExporter
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.instrumentation.flask import FlaskInstrumentor
from flask import Flask
# Initialize tracer
resource = Resource(attributes={SERVICE_NAME: "my-service"})
provider = TracerProvider(resource=resource)
processor = BatchSpanProcessor(JaegerExporter(
agent_host_name="jaeger",
agent_port=6831,
))
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
# Instrument Flask
app = Flask(__name__)
FlaskInstrumentor().instrument_app(app)
@app.route('/api/users')
def get_users():
tracer = trace.get_tracer(__name__)
with tracer.start_as_current_span("get_users") as span:
span.set_attribute("user.count", 100)
# Business logic
users = fetch_users_from_db()
return {"users": users}
def fetch_users_from_db():
tracer = trace.get_tracer(__name__)
with tracer.start_as_current_span("database_query") as span:
span.set_attribute("db.system", "postgresql")
span.set_attribute("db.statement", "SELECT * FROM users")
# Database query
return query_database()
Node.js (Express)
const { NodeTracerProvider } = require('@opentelemetry/sdk-trace-node');
const { JaegerExporter } = require('@opentelemetry/exporter-jaeger');
const { BatchSpanProcessor } = require('@opentelemetry/sdk-trace-base');
const { registerInstrumentations } = require('@opentelemetry/instrumentation');
const { HttpInstrumentation } = require('@opentelemetry/instrumentation-http');
const { ExpressInstrumentation } = require('@opentelemetry/instrumentation-express');
// Initialize tracer
const provider = new NodeTracerProvider({
resource: { attributes: { 'service.name': 'my-service' } }
});
const exporter = new JaegerExporter({
endpoint: 'http://jaeger:14268/api/traces'
});
provider.addSpanProcessor(new BatchSpanProcessor(exporter));
provider.register();
// Instrument libraries
registerInstrumentations({
instrumentations: [
new HttpInstrumentation(),
new ExpressInstrumentation(),
],
});
const express = require('express');
const app = express();
app.get('/api/users', async (req, res) => {
const tracer = trace.getTracer('my-service');
const span = tracer.startSpan('get_users');
try {
const users = await fetchUsers();
span.setAttributes({ 'user.count': users.length });
res.json({ users });
} finally {
span.end();
}
});
Go
package main
import (
"context"
"go.opentelemetry.io/otel"
"go.opentelemetry.io/otel/exporters/jaeger"
"go.opentelemetry.io/otel/sdk/resource"
sdktrace "go.opentelemetry.io/otel/sdk/trace"
semconv "go.opentelemetry.io/otel/semconv/v1.4.0"
)
func initTracer() (*sdktrace.TracerProvider, error) {
exporter, err := jaeger.New(jaeger.WithCollectorEndpoint(
jaeger.WithEndpoint("http://jaeger:14268/api/traces"),
))
if err != nil {
return nil, err
}
tp := sdktrace.NewTracerProvider(
sdktrace.WithBatcher(exporter),
sdktrace.WithResource(resource.NewWithAttributes(
semconv.SchemaURL,
semconv.ServiceNameKey.String("my-service"),
)),
)
otel.SetTracerProvider(tp)
return tp, nil
}
func getUsers(ctx context.Context) ([]User, error) {
tracer := otel.Tracer("my-service")
ctx, span := tracer.Start(ctx, "get_users")
defer span.End()
span.SetAttributes(attribute.String("user.filter", "active"))
users, err := fetchUsersFromDB(ctx)
if err != nil {
span.RecordError(err)
return nil, err
}
span.SetAttributes(attribute.Int("user.count", len(users)))
return users, nil
}
Reference: See references/instrumentation.md
Context Propagation
HTTP Headers
traceparent: 00-0af7651916cd43dd8448eb211c80319c-b7ad6b7169203331-01
tracestate: congo=t61rcWkgMzE
Propagation in HTTP Requests
Python
from opentelemetry.propagate import inject
headers = {}
inject(headers) # Injects trace context
response = requests.get('http://downstream-service/api', headers=headers)
Node.js
const { propagation } = require('@opentelemetry/api');
const headers = {};
propagation.inject(context.active(), headers);
axios.get('http://downstream-service/api', { headers });
Tempo Setup (Grafana)
Kubernetes Deployment
apiVersion: v1
kind: ConfigMap
metadata:
name: tempo-config
data:
tempo.yaml: |
server:
http_listen_port: 3200
distributor:
receivers:
jaeger:
protocols:
thrift_http:
grpc:
otlp:
protocols:
http:
grpc:
storage:
trace:
backend: s3
s3:
bucket: tempo-traces
endpoint: s3.amazonaws.com
querier:
frontend_worker:
frontend_address: tempo-query-frontend:9095
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: tempo
spec:
replicas: 1
template:
spec:
containers:
- name: tempo
image: grafana/tempo:latest
args:
- -config.file=/etc/tempo/tempo.yaml
volumeMounts:
- name: config
mountPath: /etc/tempo
volumes:
- name: config
configMap:
name: tempo-config
Reference: See assets/jaeger-config.yaml.template
Sampling Strategies
Probabilistic Sampling
# Sample 1% of traces
sampler:
type: probabilistic
param: 0.01
Rate Limiting Sampling
# Sample max 100 traces per second
sampler:
type: ratelimiting
param: 100
Adaptive Sampling
from opentelemetry.sdk.trace.sampling import ParentBased, TraceIdRatioBased
# Sample based on trace ID (deterministic)
sampler = ParentBased(root=TraceIdRatioBased(0.01))
Trace Analysis
Finding Slow Requests
Jaeger Query:
service=my-service
duration > 1s
Finding Errors
Jaeger Query:
service=my-service
error=true
tags.http.status_code >= 500
Service Dependency Graph
Jaeger automatically generates service dependency graphs showing:
- Service relationships
- Request rates
- Error rates
- Average latencies
Best Practices
- Sample appropriately (1-10% in production)
- Add meaningful tags (user_id, request_id)
- Propagate context across all service boundaries
- Log exceptions in spans
- Use consistent naming for operations
- Monitor tracing overhead (<1% CPU impact)
- Set up alerts for trace errors
- Implement distributed context (baggage)
- Use span events for important milestones
- Document instrumentation standards
Integration with Logging
Correlated Logs
import logging
from opentelemetry import trace
logger = logging.getLogger(__name__)
def process_request():
span = trace.get_current_span()
trace_id = span.get_span_context().trace_id
logger.info(
"Processing request",
extra={"trace_id": format(trace_id, '032x')}
)
Troubleshooting
No traces appearing:
- Check collector endpoint
- Verify network connectivity
- Check sampling configuration
- Review application logs
High latency overhead:
- Reduce sampling rate
- Use batch span processor
- Check exporter configuration
Reference Files
references/jaeger-setup.md- Jaeger installationreferences/instrumentation.md- Instrumentation patternsassets/jaeger-config.yaml.template- Jaeger configuration
Related Skills
prometheus-configuration- For metricsgrafana-dashboards- For visualizationslo-implementation- For latency SLOs
Frequently Asked Questions
What is distributed-tracing?
distributed-tracing is an expert AI persona designed to improve your coding workflow. Implement distributed tracing with Jaeger and Tempo to track requests across microservices and identify performance bottlenecks. Use when debugging microservices, analyzing request flows, or implementing observability for distributed systems. It provides senior-level context directly within your IDE.
How do I install the distributed-tracing skill in Cursor or Windsurf?
To install the distributed-tracing skill, download the package, extract the files to your project's .cursor/skills directory, and type @distributed-tracing in your editor chat to activate the expert instructions.
Is distributed-tracing free to download?
Yes, the distributed-tracing AI persona is completely free to download and integrate into compatible Agentic IDEs like Cursor, Windsurf, Github Copilot, and Anthropic MCP servers.
distributed-tracing
Implement distributed tracing with Jaeger and Tempo to track requests across microservices and identify performance bottlenecks. Use when debugging microservices, analyzing request flows, or implementing observability for distributed systems.
Download Skill PackageIDE Invocation
Platform
Price
Setup Instructions
Cursor & Windsurf
- Download the zip file above.
- Extract to
.cursor/skills - Type
@distributed-tracingin editor chat.
Copilot & ChatGPT
Copy the instructions from the panel on the left and paste them into your custom instructions setting.
"Adding this distributed-tracing persona to my Cursor workspace completely changed the quality of code my AI generates. Saves me hours every week."
Level up further
Developers who downloaded distributed-tracing also use these elite AI personas.
3d-web-experience
Expert in building 3D experiences for the web - Three.js, React Three Fiber, Spline, WebGL, and interactive 3D scenes. Covers product configurators, 3D portfolios, immersive websites, and bringing depth to web experiences. Use when: 3D website, three.js, WebGL, react three fiber, 3D experience.
ab-test-setup
Structured guide for setting up A/B tests with mandatory gates for hypothesis, metrics, and execution readiness.
accessibility-compliance-accessibility-audit
You are an accessibility expert specializing in WCAG compliance, inclusive design, and assistive technology compatibility. Conduct audits, identify barriers, and provide remediation guidance.