Back to Skill Hub
Download Skill Package

System Prompt / Instructions

Grafana Dashboards

Create and manage production-ready Grafana dashboards for comprehensive system observability.

Do not use this skill when

  • The task is unrelated to grafana dashboards
  • You need a different domain or tool outside this scope

Instructions

  • Clarify goals, constraints, and required inputs.
  • Apply relevant best practices and validate outcomes.
  • Provide actionable steps and verification.
  • If detailed examples are required, open resources/implementation-playbook.md.

Purpose

Design effective Grafana dashboards for monitoring applications, infrastructure, and business metrics.

Use this skill when

  • Visualize Prometheus metrics
  • Create custom dashboards
  • Implement SLO dashboards
  • Monitor infrastructure
  • Track business KPIs

Dashboard Design Principles

1. Hierarchy of Information

┌─────────────────────────────────────┐
│  Critical Metrics (Big Numbers)     │
├─────────────────────────────────────┤
│  Key Trends (Time Series)           │
├─────────────────────────────────────┤
│  Detailed Metrics (Tables/Heatmaps) │
└─────────────────────────────────────┘

2. RED Method (Services)

  • Rate - Requests per second
  • Errors - Error rate
  • Duration - Latency/response time

3. USE Method (Resources)

  • Utilization - % time resource is busy
  • Saturation - Queue length/wait time
  • Errors - Error count

Dashboard Structure

API Monitoring Dashboard

{
  "dashboard": {
    "title": "API Monitoring",
    "tags": ["api", "production"],
    "timezone": "browser",
    "refresh": "30s",
    "panels": [
      {
        "title": "Request Rate",
        "type": "graph",
        "targets": [
          {
            "expr": "sum(rate(http_requests_total[5m])) by (service)",
            "legendFormat": "{{service}}"
          }
        ],
        "gridPos": {"x": 0, "y": 0, "w": 12, "h": 8}
      },
      {
        "title": "Error Rate %",
        "type": "graph",
        "targets": [
          {
            "expr": "(sum(rate(http_requests_total{status=~\"5..\"}[5m])) / sum(rate(http_requests_total[5m]))) * 100",
            "legendFormat": "Error Rate"
          }
        ],
        "alert": {
          "conditions": [
            {
              "evaluator": {"params": [5], "type": "gt"},
              "operator": {"type": "and"},
              "query": {"params": ["A", "5m", "now"]},
              "type": "query"
            }
          ]
        },
        "gridPos": {"x": 12, "y": 0, "w": 12, "h": 8}
      },
      {
        "title": "P95 Latency",
        "type": "graph",
        "targets": [
          {
            "expr": "histogram_quantile(0.95, sum(rate(http_request_duration_seconds_bucket[5m])) by (le, service))",
            "legendFormat": "{{service}}"
          }
        ],
        "gridPos": {"x": 0, "y": 8, "w": 24, "h": 8}
      }
    ]
  }
}

Reference: See assets/api-dashboard.json

Panel Types

1. Stat Panel (Single Value)

{
  "type": "stat",
  "title": "Total Requests",
  "targets": [{
    "expr": "sum(http_requests_total)"
  }],
  "options": {
    "reduceOptions": {
      "values": false,
      "calcs": ["lastNotNull"]
    },
    "orientation": "auto",
    "textMode": "auto",
    "colorMode": "value"
  },
  "fieldConfig": {
    "defaults": {
      "thresholds": {
        "mode": "absolute",
        "steps": [
          {"value": 0, "color": "green"},
          {"value": 80, "color": "yellow"},
          {"value": 90, "color": "red"}
        ]
      }
    }
  }
}

2. Time Series Graph

{
  "type": "graph",
  "title": "CPU Usage",
  "targets": [{
    "expr": "100 - (avg by (instance) (rate(node_cpu_seconds_total{mode=\"idle\"}[5m])) * 100)"
  }],
  "yaxes": [
    {"format": "percent", "max": 100, "min": 0},
    {"format": "short"}
  ]
}

3. Table Panel

{
  "type": "table",
  "title": "Service Status",
  "targets": [{
    "expr": "up",
    "format": "table",
    "instant": true
  }],
  "transformations": [
    {
      "id": "organize",
      "options": {
        "excludeByName": {"Time": true},
        "indexByName": {},
        "renameByName": {
          "instance": "Instance",
          "job": "Service",
          "Value": "Status"
        }
      }
    }
  ]
}

4. Heatmap

{
  "type": "heatmap",
  "title": "Latency Heatmap",
  "targets": [{
    "expr": "sum(rate(http_request_duration_seconds_bucket[5m])) by (le)",
    "format": "heatmap"
  }],
  "dataFormat": "tsbuckets",
  "yAxis": {
    "format": "s"
  }
}

Variables

Query Variables

{
  "templating": {
    "list": [
      {
        "name": "namespace",
        "type": "query",
        "datasource": "Prometheus",
        "query": "label_values(kube_pod_info, namespace)",
        "refresh": 1,
        "multi": false
      },
      {
        "name": "service",
        "type": "query",
        "datasource": "Prometheus",
        "query": "label_values(kube_service_info{namespace=\"$namespace\"}, service)",
        "refresh": 1,
        "multi": true
      }
    ]
  }
}

Use Variables in Queries

sum(rate(http_requests_total{namespace="$namespace", service=~"$service"}[5m]))

Alerts in Dashboards

{
  "alert": {
    "name": "High Error Rate",
    "conditions": [
      {
        "evaluator": {
          "params": [5],
          "type": "gt"
        },
        "operator": {"type": "and"},
        "query": {
          "params": ["A", "5m", "now"]
        },
        "reducer": {"type": "avg"},
        "type": "query"
      }
    ],
    "executionErrorState": "alerting",
    "for": "5m",
    "frequency": "1m",
    "message": "Error rate is above 5%",
    "noDataState": "no_data",
    "notifications": [
      {"uid": "slack-channel"}
    ]
  }
}

Dashboard Provisioning

dashboards.yml:

apiVersion: 1

providers:
  - name: 'default'
    orgId: 1
    folder: 'General'
    type: file
    disableDeletion: false
    updateIntervalSeconds: 10
    allowUiUpdates: true
    options:
      path: /etc/grafana/dashboards

Common Dashboard Patterns

Infrastructure Dashboard

Key Panels:

  • CPU utilization per node
  • Memory usage per node
  • Disk I/O
  • Network traffic
  • Pod count by namespace
  • Node status

Reference: See assets/infrastructure-dashboard.json

Database Dashboard

Key Panels:

  • Queries per second
  • Connection pool usage
  • Query latency (P50, P95, P99)
  • Active connections
  • Database size
  • Replication lag
  • Slow queries

Reference: See assets/database-dashboard.json

Application Dashboard

Key Panels:

  • Request rate
  • Error rate
  • Response time (percentiles)
  • Active users/sessions
  • Cache hit rate
  • Queue length

Best Practices

  1. Start with templates (Grafana community dashboards)
  2. Use consistent naming for panels and variables
  3. Group related metrics in rows
  4. Set appropriate time ranges (default: Last 6 hours)
  5. Use variables for flexibility
  6. Add panel descriptions for context
  7. Configure units correctly
  8. Set meaningful thresholds for colors
  9. Use consistent colors across dashboards
  10. Test with different time ranges

Dashboard as Code

Terraform Provisioning

resource "grafana_dashboard" "api_monitoring" {
  config_json = file("${path.module}/dashboards/api-monitoring.json")
  folder      = grafana_folder.monitoring.id
}

resource "grafana_folder" "monitoring" {
  title = "Production Monitoring"
}

Ansible Provisioning

- name: Deploy Grafana dashboards
  copy:
    src: "{{ item }}"
    dest: /etc/grafana/dashboards/
  with_fileglob:
    - "dashboards/*.json"
  notify: restart grafana

Reference Files

  • assets/api-dashboard.json - API monitoring dashboard
  • assets/infrastructure-dashboard.json - Infrastructure dashboard
  • assets/database-dashboard.json - Database monitoring dashboard
  • references/dashboard-design.md - Dashboard design guide

Related Skills

  • prometheus-configuration - For metric collection
  • slo-implementation - For SLO dashboards

Frequently Asked Questions

What is grafana-dashboards?

grafana-dashboards is an expert AI persona designed to improve your coding workflow. Create and manage production Grafana dashboards for real-time visualization of system and application metrics. Use when building monitoring dashboards, visualizing metrics, or creating operational observability interfaces. It provides senior-level context directly within your IDE.

How do I install the grafana-dashboards skill in Cursor or Windsurf?

To install the grafana-dashboards skill, download the package, extract the files to your project's .cursor/skills directory, and type @grafana-dashboards in your editor chat to activate the expert instructions.

Is grafana-dashboards free to download?

Yes, the grafana-dashboards AI persona is completely free to download and integrate into compatible Agentic IDEs like Cursor, Windsurf, Github Copilot, and Anthropic MCP servers.

@

grafana-dashboards

Create and manage production Grafana dashboards for real-time visualization of system and application metrics. Use when building monitoring dashboards, visualizing metrics, or creating operational observability interfaces.

Download Skill Package

IDE Invocation

@grafana-dashboards
COPY

Platform

IDE Native

Price

Free Download

Setup Instructions

Cursor & Windsurf

  1. Download the zip file above.
  2. Extract to .cursor/skills
  3. Type @grafana-dashboards in editor chat.

Copilot & ChatGPT

Copy the instructions from the panel on the left and paste them into your custom instructions setting.

"Adding this grafana-dashboards persona to my Cursor workspace completely changed the quality of code my AI generates. Saves me hours every week."

A
Alex Dev
Senior Engineer, TechCorp