System Prompt / Instructions
Prometheus Configuration
Complete guide to Prometheus setup, metric collection, scrape configuration, and recording rules.
Do not use this skill when
- The task is unrelated to prometheus configuration
- You need a different domain or tool outside this scope
Instructions
- Clarify goals, constraints, and required inputs.
- Apply relevant best practices and validate outcomes.
- Provide actionable steps and verification.
- If detailed examples are required, open
resources/implementation-playbook.md.
Purpose
Configure Prometheus for comprehensive metric collection, alerting, and monitoring of infrastructure and applications.
Use this skill when
- Set up Prometheus monitoring
- Configure metric scraping
- Create recording rules
- Design alert rules
- Implement service discovery
Prometheus Architecture
┌──────────────┐
│ Applications │ ← Instrumented with client libraries
└──────┬───────┘
│ /metrics endpoint
↓
┌──────────────┐
│ Prometheus │ ← Scrapes metrics periodically
│ Server │
└──────┬───────┘
│
├─→ AlertManager (alerts)
├─→ Grafana (visualization)
└─→ Long-term storage (Thanos/Cortex)
Installation
Kubernetes with Helm
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update
helm install prometheus prometheus-community/kube-prometheus-stack \
--namespace monitoring \
--create-namespace \
--set prometheus.prometheusSpec.retention=30d \
--set prometheus.prometheusSpec.storageVolumeSize=50Gi
Docker Compose
version: '3.8'
services:
prometheus:
image: prom/prometheus:latest
ports:
- "9090:9090"
volumes:
- ./prometheus.yml:/etc/prometheus/prometheus.yml
- prometheus-data:/prometheus
command:
- '--config.file=/etc/prometheus/prometheus.yml'
- '--storage.tsdb.path=/prometheus'
- '--storage.tsdb.retention.time=30d'
volumes:
prometheus-data:
Configuration File
prometheus.yml:
global:
scrape_interval: 15s
evaluation_interval: 15s
external_labels:
cluster: 'production'
region: 'us-west-2'
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
- alertmanager:9093
# Load rules files
rule_files:
- /etc/prometheus/rules/*.yml
# Scrape configurations
scrape_configs:
# Prometheus itself
- job_name: 'prometheus'
static_configs:
- targets: ['localhost:9090']
# Node exporters
- job_name: 'node-exporter'
static_configs:
- targets:
- 'node1:9100'
- 'node2:9100'
- 'node3:9100'
relabel_configs:
- source_labels: [__address__]
target_label: instance
regex: '([^:]+)(:[0-9]+)?'
replacement: '${1}'
# Kubernetes pods with annotations
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
target_label: __address__
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: pod
# Application metrics
- job_name: 'my-app'
static_configs:
- targets:
- 'app1.example.com:9090'
- 'app2.example.com:9090'
metrics_path: '/metrics'
scheme: 'https'
tls_config:
ca_file: /etc/prometheus/ca.crt
cert_file: /etc/prometheus/client.crt
key_file: /etc/prometheus/client.key
Reference: See assets/prometheus.yml.template
Scrape Configurations
Static Targets
scrape_configs:
- job_name: 'static-targets'
static_configs:
- targets: ['host1:9100', 'host2:9100']
labels:
env: 'production'
region: 'us-west-2'
File-based Service Discovery
scrape_configs:
- job_name: 'file-sd'
file_sd_configs:
- files:
- /etc/prometheus/targets/*.json
- /etc/prometheus/targets/*.yml
refresh_interval: 5m
targets/production.json:
[
{
"targets": ["app1:9090", "app2:9090"],
"labels": {
"env": "production",
"service": "api"
}
}
]
Kubernetes Service Discovery
scrape_configs:
- job_name: 'kubernetes-services'
kubernetes_sd_configs:
- role: service
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
Reference: See references/scrape-configs.md
Recording Rules
Create pre-computed metrics for frequently queried expressions:
# /etc/prometheus/rules/recording_rules.yml
groups:
- name: api_metrics
interval: 15s
rules:
# HTTP request rate per service
- record: job:http_requests:rate5m
expr: sum by (job) (rate(http_requests_total[5m]))
# Error rate percentage
- record: job:http_requests_errors:rate5m
expr: sum by (job) (rate(http_requests_total{status=~"5.."}[5m]))
- record: job:http_requests_error_rate:percentage
expr: |
(job:http_requests_errors:rate5m / job:http_requests:rate5m) * 100
# P95 latency
- record: job:http_request_duration:p95
expr: |
histogram_quantile(0.95,
sum by (job, le) (rate(http_request_duration_seconds_bucket[5m]))
)
- name: resource_metrics
interval: 30s
rules:
# CPU utilization percentage
- record: instance:node_cpu:utilization
expr: |
100 - (avg by (instance) (rate(node_cpu_seconds_total{mode="idle"}[5m])) * 100)
# Memory utilization percentage
- record: instance:node_memory:utilization
expr: |
100 - ((node_memory_MemAvailable_bytes / node_memory_MemTotal_bytes) * 100)
# Disk usage percentage
- record: instance:node_disk:utilization
expr: |
100 - ((node_filesystem_avail_bytes / node_filesystem_size_bytes) * 100)
Reference: See references/recording-rules.md
Alert Rules
# /etc/prometheus/rules/alert_rules.yml
groups:
- name: availability
interval: 30s
rules:
- alert: ServiceDown
expr: up{job="my-app"} == 0
for: 1m
labels:
severity: critical
annotations:
summary: "Service {{ $labels.instance }} is down"
description: "{{ $labels.job }} has been down for more than 1 minute"
- alert: HighErrorRate
expr: job:http_requests_error_rate:percentage > 5
for: 5m
labels:
severity: warning
annotations:
summary: "High error rate for {{ $labels.job }}"
description: "Error rate is {{ $value }}% (threshold: 5%)"
- alert: HighLatency
expr: job:http_request_duration:p95 > 1
for: 5m
labels:
severity: warning
annotations:
summary: "High latency for {{ $labels.job }}"
description: "P95 latency is {{ $value }}s (threshold: 1s)"
- name: resources
interval: 1m
rules:
- alert: HighCPUUsage
expr: instance:node_cpu:utilization > 80
for: 5m
labels:
severity: warning
annotations:
summary: "High CPU usage on {{ $labels.instance }}"
description: "CPU usage is {{ $value }}%"
- alert: HighMemoryUsage
expr: instance:node_memory:utilization > 85
for: 5m
labels:
severity: warning
annotations:
summary: "High memory usage on {{ $labels.instance }}"
description: "Memory usage is {{ $value }}%"
- alert: DiskSpaceLow
expr: instance:node_disk:utilization > 90
for: 5m
labels:
severity: critical
annotations:
summary: "Low disk space on {{ $labels.instance }}"
description: "Disk usage is {{ $value }}%"
Validation
# Validate configuration
promtool check config prometheus.yml
# Validate rules
promtool check rules /etc/prometheus/rules/*.yml
# Test query
promtool query instant http://localhost:9090 'up'
Reference: See scripts/validate-prometheus.sh
Best Practices
- Use consistent naming for metrics (prefix_name_unit)
- Set appropriate scrape intervals (15-60s typical)
- Use recording rules for expensive queries
- Implement high availability (multiple Prometheus instances)
- Configure retention based on storage capacity
- Use relabeling for metric cleanup
- Monitor Prometheus itself
- Implement federation for large deployments
- Use Thanos/Cortex for long-term storage
- Document custom metrics
Troubleshooting
Check scrape targets:
curl http://localhost:9090/api/v1/targets
Check configuration:
curl http://localhost:9090/api/v1/status/config
Test query:
curl 'http://localhost:9090/api/v1/query?query=up'
Reference Files
assets/prometheus.yml.template- Complete configuration templatereferences/scrape-configs.md- Scrape configuration patternsreferences/recording-rules.md- Recording rule examplesscripts/validate-prometheus.sh- Validation script
Related Skills
grafana-dashboards- For visualizationslo-implementation- For SLO monitoringdistributed-tracing- For request tracing
Frequently Asked Questions
What is prometheus-configuration?
prometheus-configuration is an expert AI persona designed to improve your coding workflow. Set up Prometheus for comprehensive metric collection, storage, and monitoring of infrastructure and applications. Use when implementing metrics collection, setting up monitoring infrastructure, or configuring alerting systems. It provides senior-level context directly within your IDE.
How do I install the prometheus-configuration skill in Cursor or Windsurf?
To install the prometheus-configuration skill, download the package, extract the files to your project's .cursor/skills directory, and type @prometheus-configuration in your editor chat to activate the expert instructions.
Is prometheus-configuration free to download?
Yes, the prometheus-configuration AI persona is completely free to download and integrate into compatible Agentic IDEs like Cursor, Windsurf, Github Copilot, and Anthropic MCP servers.
prometheus-configuration
Set up Prometheus for comprehensive metric collection, storage, and monitoring of infrastructure and applications. Use when implementing metrics collection, setting up monitoring infrastructure, or configuring alerting systems.
Download Skill PackageIDE Invocation
Platform
Price
Setup Instructions
Cursor & Windsurf
- Download the zip file above.
- Extract to
.cursor/skills - Type
@prometheus-configurationin editor chat.
Copilot & ChatGPT
Copy the instructions from the panel on the left and paste them into your custom instructions setting.
"Adding this prometheus-configuration persona to my Cursor workspace completely changed the quality of code my AI generates. Saves me hours every week."
Level up further
Developers who downloaded prometheus-configuration also use these elite AI personas.
3d-web-experience
Expert in building 3D experiences for the web - Three.js, React Three Fiber, Spline, WebGL, and interactive 3D scenes. Covers product configurators, 3D portfolios, immersive websites, and bringing depth to web experiences. Use when: 3D website, three.js, WebGL, react three fiber, 3D experience.
ab-test-setup
Structured guide for setting up A/B tests with mandatory gates for hypothesis, metrics, and execution readiness.
accessibility-compliance-accessibility-audit
You are an accessibility expert specializing in WCAG compliance, inclusive design, and assistive technology compatibility. Conduct audits, identify barriers, and provide remediation guidance.