System Prompt / Instructions
Service Mesh Observability
Complete guide to observability patterns for Istio, Linkerd, and service mesh deployments.
Do not use this skill when
- The task is unrelated to service mesh observability
- You need a different domain or tool outside this scope
Instructions
- Clarify goals, constraints, and required inputs.
- Apply relevant best practices and validate outcomes.
- Provide actionable steps and verification.
- If detailed examples are required, open
resources/implementation-playbook.md.
Use this skill when
- Setting up distributed tracing across services
- Implementing service mesh metrics and dashboards
- Debugging latency and error issues
- Defining SLOs for service communication
- Visualizing service dependencies
- Troubleshooting mesh connectivity
Core Concepts
1. Three Pillars of Observability
┌─────────────────────────────────────────────────────┐
│ Observability │
├─────────────────┬─────────────────┬─────────────────┤
│ Metrics │ Traces │ Logs │
│ │ │ │
│ • Request rate │ • Span context │ • Access logs │
│ • Error rate │ • Latency │ • Error details │
│ • Latency P50 │ • Dependencies │ • Debug info │
│ • Saturation │ • Bottlenecks │ • Audit trail │
└─────────────────┴─────────────────┴─────────────────┘
2. Golden Signals for Mesh
| Signal | Description | Alert Threshold | |--------|-------------|-----------------| | Latency | Request duration P50, P99 | P99 > 500ms | | Traffic | Requests per second | Anomaly detection | | Errors | 5xx error rate | > 1% | | Saturation | Resource utilization | > 80% |
Templates
Template 1: Istio with Prometheus & Grafana
# Install Prometheus
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus
namespace: istio-system
data:
prometheus.yml: |
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'istio-mesh'
kubernetes_sd_configs:
- role: endpoints
namespaces:
names:
- istio-system
relabel_configs:
- source_labels: [__meta_kubernetes_service_name]
action: keep
regex: istio-telemetry
---
# ServiceMonitor for Prometheus Operator
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: istio-mesh
namespace: istio-system
spec:
selector:
matchLabels:
app: istiod
endpoints:
- port: http-monitoring
interval: 15s
Template 2: Key Istio Metrics Queries
# Request rate by service
sum(rate(istio_requests_total{reporter="destination"}[5m])) by (destination_service_name)
# Error rate (5xx)
sum(rate(istio_requests_total{reporter="destination", response_code=~"5.."}[5m]))
/ sum(rate(istio_requests_total{reporter="destination"}[5m])) * 100
# P99 latency
histogram_quantile(0.99,
sum(rate(istio_request_duration_milliseconds_bucket{reporter="destination"}[5m]))
by (le, destination_service_name))
# TCP connections
sum(istio_tcp_connections_opened_total{reporter="destination"}) by (destination_service_name)
# Request size
histogram_quantile(0.99,
sum(rate(istio_request_bytes_bucket{reporter="destination"}[5m]))
by (le, destination_service_name))
Template 3: Jaeger Distributed Tracing
# Jaeger installation for Istio
apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
spec:
meshConfig:
enableTracing: true
defaultConfig:
tracing:
sampling: 100.0 # 100% in dev, lower in prod
zipkin:
address: jaeger-collector.istio-system:9411
---
# Jaeger deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: jaeger
namespace: istio-system
spec:
selector:
matchLabels:
app: jaeger
template:
metadata:
labels:
app: jaeger
spec:
containers:
- name: jaeger
image: jaegertracing/all-in-one:1.50
ports:
- containerPort: 5775 # UDP
- containerPort: 6831 # Thrift
- containerPort: 6832 # Thrift
- containerPort: 5778 # Config
- containerPort: 16686 # UI
- containerPort: 14268 # HTTP
- containerPort: 14250 # gRPC
- containerPort: 9411 # Zipkin
env:
- name: COLLECTOR_ZIPKIN_HOST_PORT
value: ":9411"
Template 4: Linkerd Viz Dashboard
# Install Linkerd viz extension
linkerd viz install | kubectl apply -f -
# Access dashboard
linkerd viz dashboard
# CLI commands for observability
# Top requests
linkerd viz top deploy/my-app
# Per-route metrics
linkerd viz routes deploy/my-app --to deploy/backend
# Live traffic inspection
linkerd viz tap deploy/my-app --to deploy/backend
# Service edges (dependencies)
linkerd viz edges deployment -n my-namespace
Template 5: Grafana Dashboard JSON
{
"dashboard": {
"title": "Service Mesh Overview",
"panels": [
{
"title": "Request Rate",
"type": "graph",
"targets": [
{
"expr": "sum(rate(istio_requests_total{reporter=\"destination\"}[5m])) by (destination_service_name)",
"legendFormat": "{{destination_service_name}}"
}
]
},
{
"title": "Error Rate",
"type": "gauge",
"targets": [
{
"expr": "sum(rate(istio_requests_total{response_code=~\"5..\"}[5m])) / sum(rate(istio_requests_total[5m])) * 100"
}
],
"fieldConfig": {
"defaults": {
"thresholds": {
"steps": [
{"value": 0, "color": "green"},
{"value": 1, "color": "yellow"},
{"value": 5, "color": "red"}
]
}
}
}
},
{
"title": "P99 Latency",
"type": "graph",
"targets": [
{
"expr": "histogram_quantile(0.99, sum(rate(istio_request_duration_milliseconds_bucket{reporter=\"destination\"}[5m])) by (le, destination_service_name))",
"legendFormat": "{{destination_service_name}}"
}
]
},
{
"title": "Service Topology",
"type": "nodeGraph",
"targets": [
{
"expr": "sum(rate(istio_requests_total{reporter=\"destination\"}[5m])) by (source_workload, destination_service_name)"
}
]
}
]
}
}
Template 6: Kiali Service Mesh Visualization
# Kiali installation
apiVersion: kiali.io/v1alpha1
kind: Kiali
metadata:
name: kiali
namespace: istio-system
spec:
auth:
strategy: anonymous # or openid, token
deployment:
accessible_namespaces:
- "**"
external_services:
prometheus:
url: http://prometheus.istio-system:9090
tracing:
url: http://jaeger-query.istio-system:16686
grafana:
url: http://grafana.istio-system:3000
Template 7: OpenTelemetry Integration
# OpenTelemetry Collector for mesh
apiVersion: v1
kind: ConfigMap
metadata:
name: otel-collector-config
data:
config.yaml: |
receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
http:
endpoint: 0.0.0.0:4318
zipkin:
endpoint: 0.0.0.0:9411
processors:
batch:
timeout: 10s
exporters:
jaeger:
endpoint: jaeger-collector:14250
tls:
insecure: true
prometheus:
endpoint: 0.0.0.0:8889
service:
pipelines:
traces:
receivers: [otlp, zipkin]
processors: [batch]
exporters: [jaeger]
metrics:
receivers: [otlp]
processors: [batch]
exporters: [prometheus]
---
# Istio Telemetry v2 with OTel
apiVersion: telemetry.istio.io/v1alpha1
kind: Telemetry
metadata:
name: mesh-default
namespace: istio-system
spec:
tracing:
- providers:
- name: otel
randomSamplingPercentage: 10
Alerting Rules
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: mesh-alerts
namespace: istio-system
spec:
groups:
- name: mesh.rules
rules:
- alert: HighErrorRate
expr: |
sum(rate(istio_requests_total{response_code=~"5.."}[5m])) by (destination_service_name)
/ sum(rate(istio_requests_total[5m])) by (destination_service_name) > 0.05
for: 5m
labels:
severity: critical
annotations:
summary: "High error rate for {{ $labels.destination_service_name }}"
- alert: HighLatency
expr: |
histogram_quantile(0.99, sum(rate(istio_request_duration_milliseconds_bucket[5m]))
by (le, destination_service_name)) > 1000
for: 5m
labels:
severity: warning
annotations:
summary: "High P99 latency for {{ $labels.destination_service_name }}"
- alert: MeshCertExpiring
expr: |
(certmanager_certificate_expiration_timestamp_seconds - time()) / 86400 < 7
labels:
severity: warning
annotations:
summary: "Mesh certificate expiring in less than 7 days"
Best Practices
Do's
- Sample appropriately - 100% in dev, 1-10% in prod
- Use trace context - Propagate headers consistently
- Set up alerts - For golden signals
- Correlate metrics/traces - Use exemplars
- Retain strategically - Hot/cold storage tiers
Don'ts
- Don't over-sample - Storage costs add up
- Don't ignore cardinality - Limit label values
- Don't skip dashboards - Visualize dependencies
- Don't forget costs - Monitor observability costs
Resources
Frequently Asked Questions
What is service-mesh-observability?
service-mesh-observability is an expert AI persona designed to improve your coding workflow. Implement comprehensive observability for service meshes including distributed tracing, metrics, and visualization. Use when setting up mesh monitoring, debugging latency issues, or implementing SLOs for service communication. It provides senior-level context directly within your IDE.
How do I install the service-mesh-observability skill in Cursor or Windsurf?
To install the service-mesh-observability skill, download the package, extract the files to your project's .cursor/skills directory, and type @service-mesh-observability in your editor chat to activate the expert instructions.
Is service-mesh-observability free to download?
Yes, the service-mesh-observability AI persona is completely free to download and integrate into compatible Agentic IDEs like Cursor, Windsurf, Github Copilot, and Anthropic MCP servers.
service-mesh-observability
Implement comprehensive observability for service meshes including distributed tracing, metrics, and visualization. Use when setting up mesh monitoring, debugging latency issues, or implementing SLOs for service communication.
Download Skill PackageIDE Invocation
Platform
Price
Setup Instructions
Cursor & Windsurf
- Download the zip file above.
- Extract to
.cursor/skills - Type
@service-mesh-observabilityin editor chat.
Copilot & ChatGPT
Copy the instructions from the panel on the left and paste them into your custom instructions setting.
"Adding this service-mesh-observability persona to my Cursor workspace completely changed the quality of code my AI generates. Saves me hours every week."
Level up further
Developers who downloaded service-mesh-observability also use these elite AI personas.
3d-web-experience
Expert in building 3D experiences for the web - Three.js, React Three Fiber, Spline, WebGL, and interactive 3D scenes. Covers product configurators, 3D portfolios, immersive websites, and bringing depth to web experiences. Use when: 3D website, three.js, WebGL, react three fiber, 3D experience.
ab-test-setup
Structured guide for setting up A/B tests with mandatory gates for hypothesis, metrics, and execution readiness.
accessibility-compliance-accessibility-audit
You are an accessibility expert specializing in WCAG compliance, inclusive design, and assistive technology compatibility. Conduct audits, identify barriers, and provide remediation guidance.